organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4,5-Dimethoxy-2-nitrophenyl)-1,3diphenyl-2-pyrazoline

P. Kumaradhas,^a* A. David Stephen,^a N. Satheesh Rai,^b Balakrishna Kalluraya^b and Reji Thomas^c

^aDepartment of Physics, Periyar University, Salem 636 011, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalore, India, and ^cChemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India

Correspondence e-mail: kumaradhas@yahoo.com

Received 16 April 2007; accepted 22 June 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 12.7.

In the title compound, $C_{23}H_{21}N_3O_4$, the central pyrazoline ring shows a slight envelope distortion from planarity. The aromatic ring substituents at the 1 and 5 positions of the central ring exhibit a gauche conformation. In the crystal structure, the molecules are linked by weak $C-H\cdots O$ and $C-H \cdots N$ interactions. The O atoms of the nitro group are disordered over two sites in approximately the ratio 2:1.

Related literature

For related literature, see: Gilchrist (1998); Nakamichi et al. (2002); Rurack et al. (2000); Taylor et al. (1992); Ge (2006).

Experimental

Crystal data

$V = 4148.15 (13) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 (2) K
$0.35 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker CCD diffractometer Absorption correction: none 9555 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 292 parameters $wR(F^2) = 0.114$ H-atom parameters constrained S = 0.99 $\Delta \rho_{\rm max} = 0.10 \text{ e } \text{\AA}^ \Delta \rho_{\rm min}$ = -0.16 e Å⁻³ 3721 reflections

3721 independent reflections

 $R_{\rm int} = 0.033$

2605 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C15-H15\cdots O1B^{i}$ $C20-H20\cdots N2^{ii}$	0.93 0.93	2.55 2.54	3.467 (6) 3.364 (2)	170 149
		2	. 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, -y + 1, $z + \frac{1}{2}$.

Data collection: APEX (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2376).

References

- Bruker (2000). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ge, W.-Z. (2006). Acta Cryst. E62, 03109-03110.
- Gilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison-Wesley Longman Ltd.
- Nakamichi, N., Kawashita, Y. & Hayashi, M. (2002). Org. Lett. 4, 3955-3957.
- Rurack, K., Bricks, J. L., Schulz, B., Maus, M., Reck, G. & Resch-Genger, U. (2000). J. Phys. Chem. A, 104, 6171-6188.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Taylor, E. C., Patel, H. & Kumar, H. (1992). Tetrahedron, 48, 8089-8100.

Acta Cryst. (2007). E63, o3402 [doi:10.1107/81600536807030504]

5-(4,5-Dimethoxy-2-nitrophenyl)-1,3-diphenyl-2-pyrazoline

P. Kumaradhas, A. David Stephen, N. Satheesh Rai, B. Kalluraya and R. Thomas

Comment

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). In this series, 1,3,5–trisubstituted pyrazolines, prepared from phenylhydrazine and chalcone derivatives (Nakamichi *et al.*, 2002) have been used as antitumour (Taylor *et al.*, 1992) agents. Here we report the structure of the title compound, (I), a new derivative of pyrazoline.

In the pyrazoline ring (Fig. 1), the C12=N2 [1.287 (3) Å] and N1—N2 [1.382 (3) Å] bond lengths are shorter than those found in similar structures reported by Rurack *et al.* (2000) and Ge (2006). [C=N = 1.291 (2) Å, 1.293 (3)Å and N—N = 1.394 (3) Å, 1.384 (2)Å respectively]. The C3—C11—N1—C18 torsion angle in (I) of 85.48 (16)° indicates a *gauche* conformation for the substituents. The pyrazoline ring shows a slightly distorted envelope conformation with C9 deviating by 0.036 (3)Å from the plane of C10, C11, N1 and N2. The dihedral angle between the pyrazoline ring and the 3–phenyl ring is 4.6 (1)°, marking their near co-planarity with a maximum deviation of 0.068 (3)Å for atom C(17). The 5–phenyl ring is almost perpendicular to the pyrazoline ring as the dihedral angle between them is 75.4 (1)°.

The molecular packing is stabilized by weak C—H···O and C—H···N interactions (Table 1, Fig. 2).

Experimental

A mixture of 1-aryl-3-(3,4-dimethoxy –6-nitrophenyl) –2-propene-1-ones (0.01 mol) and phenylhydrazine (0.01 mol) in glacial acetic acid (5 ml) was taken in a conical flask and irradiated in a microwave oven for 5 minutes. The resultant solution was poured into a beaker containing crushed ice and the solid separated was collected by filtration, washed with water, dried and recrystallized from formacetic acid. Red blocks of (I) were grown from ethanol by slow evaporation at room temperature.

Refinement

The O atoms of the nitro group are disordered over two sites in a 0.68 (2):0.32 (2) ratio (sum constrained to unity). All the H atoms were fixed geometrically (C—H = 0.93=0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. Hydrogen bonding interactions in (I) shown as dashed lines.

5-(4,5-Dimethoxy-2-nitrophenyl)-1,3-diphenyl-2-pyrazoline

Crystal data	
$C_{23}H_{21}N_{3}O_{4}$	$F_{000} = 1696$
$M_r = 403.43$	$D_{\rm x} = 1.292 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 55 reflections
<i>a</i> = 36.0919 (7) Å	$\theta = 5-11^{\circ}$
<i>b</i> = 13.4372 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 8.8190 (2) Å	T = 296 (2) K
$\beta = 104.099 (1)^{\circ}$	Block, red
$V = 4148.15 (13) \text{ Å}^3$	$0.35 \times 0.30 \times 0.20 \text{ mm}$
Z = 8	

Data collection

Bruker SMART CCD diffractometer	$R_{\rm int} = 0.033$
ω scans	$\theta_{max} = 25.3^{\circ}$
Absorption correction: none	$\theta_{\min} = 1.2^{\circ}$
9555 measured reflections	$h = -42 \rightarrow 31$
3721 independent reflections	$k = -16 \rightarrow 16$
2605 reflections with $I > 2\sigma(I)$	$l = -7 \rightarrow 10$

Refinement

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0637P)^2]$		
$P[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_0 + 2F_c)/3$ $(\Lambda/\sigma)_{max} < 0.001$		
$wR(F^2) = 0.114$	$\Delta \rho_{\rm max} = 0.10 \text{ e} \text{ Å}^{-3}$		
S = 0.99	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$		
3721 reflections	Extinction correction: none		
292 parameters			

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.04766 (4)	0.15292 (14)	0.6636 (2)	0.0745 (5)	
H1	0.0341	0.0973	0.618	0.089*	
C2	0.08305 (4)	0.14080 (11)	0.77009 (19)	0.0653 (4)	
C3	0.10437 (4)	0.22122 (10)	0.84411 (16)	0.0522 (4)	
C4	0.08773 (4)	0.31481 (11)	0.80876 (17)	0.0559 (4)	
H4	0.1005	0.3702	0.8592	0.067*	
C5	0.05307 (4)	0.32859 (12)	0.70193 (18)	0.0627 (4)	
C6	0.03303 (4)	0.24523 (13)	0.62634 (19)	0.0674 (4)	
C7	-0.02062 (5)	0.1837 (2)	0.4375 (3)	0.1142 (8)	
H7A	-0.0045	0.1479	0.3845	0.171*	
H7B	-0.0428	0.2074	0.3624	0.171*	
H7C	-0.0284	0.1403	0.5105	0.171*	
C8	0.05319 (6)	0.50507 (15)	0.7358 (3)	0.1170 (8)	
H8A	0.0543	0.5001	0.8453	0.175*	
H8B	0.0382	0.562	0.6928	0.175*	
H8C	0.0786	0.5122	0.7216	0.175*	
C9	0.17542 (4)	0.21164 (10)	0.85409 (18)	0.0570 (4)	
H9A	0.192	0.1543	0.8812	0.068*	
H9B	0.1639	0.211	0.7426	0.068*	
C10	0.19683 (4)	0.30695 (10)	0.90319 (16)	0.0500 (3)	
C11	0.14472 (4)	0.21363 (10)	0.94876 (17)	0.0528 (4)	
H11	0.147	0.1544	1.0152	0.063*	
C12	0.22849 (4)	0.34477 (11)	0.84239 (16)	0.0528 (4)	
C13	0.24274 (4)	0.28957 (13)	0.73612 (19)	0.0665 (4)	
H13	0.2315	0.2289	0.7005	0.08*	
C14	0.27354 (5)	0.32351 (14)	0.6821 (2)	0.0749 (5)	
H14	0.2829	0.2853	0.6117	0.09*	
C15	0.29022 (5)	0.41318 (14)	0.7324 (2)	0.0753 (5)	
H15	0.3108	0.436	0.6962	0.09*	
C16	0.27623 (5)	0.46919 (13)	0.8368 (2)	0.0729 (5)	
H16	0.2874	0.5303	0.8702	0.087*	
C17	0.24589 (4)	0.43598 (12)	0.89252 (18)	0.0618 (4)	
H17	0.237	0.4744	0.9638	0.074*	
C18	0.14669 (4)	0.31886 (10)	1.18989 (16)	0.0489 (3)	
C19	0.16297 (4)	0.39793 (11)	1.28447 (17)	0.0588 (4)	
H19	0.1795	0.4413	1.2512	0.071*	
C20	0.15472 (5)	0.41225 (13)	1.42746 (18)	0.0712 (5)	
H20	0.1659	0.4651	1.4903	0.085*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C21	0.13019 (5)	0.34949 (13)	1.4787 (2)	0.0769 (5)	
H21	0.1245	0.3601	1.5748	0.092*	
C22	0.11419 (5)	0.27102 (14)	1.3861 (2)	0.0749 (5)	
H22	0.0978	0.2279	1.4206	0.09*	
C23	0.12210 (4)	0.25515 (12)	1.24222 (19)	0.0640 (4)	
H23	0.111	0.2018	1.1805	0.077*	
N1	0.15523 (3)	0.30319 (9)	1.04577 (13)	0.0530 (3)	
N2	0.18567 (3)	0.35337 (8)	1.01177 (13)	0.0512 (3)	
N3	0.09614 (6)	0.03865 (13)	0.8015 (3)	0.1039 (6)	
O1A	0.1226 (6)	0.0251 (11)	0.856 (2)	0.217 (11)	0.32 (2)
O2A	0.0810 (7)	-0.0219 (9)	0.692 (3)	0.150 (9)	0.32 (2)
O1B	0.13056 (17)	0.0181 (4)	0.8620 (6)	0.0994 (18)	0.68 (2)
O2B	0.07079 (11)	-0.0280 (3)	0.7954 (18)	0.133 (3)	0.68 (2)
O3	-0.00013 (3)	0.26599 (10)	0.51909 (15)	0.0943 (4)	
O4	0.03612 (3)	0.41708 (9)	0.65777 (15)	0.0895 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0562 (9)	0.0791 (12)	0.0831 (12)	-0.0132 (9)	0.0070 (8)	-0.0252 (9)
C2	0.0544 (9)	0.0571 (10)	0.0805 (11)	-0.0057 (7)	0.0090 (8)	-0.0163 (8)
C3	0.0465 (7)	0.0560 (9)	0.0544 (8)	-0.0053 (7)	0.0128 (6)	-0.0076 (6)
C4	0.0499 (8)	0.0585 (9)	0.0583 (9)	-0.0052 (7)	0.0116 (7)	-0.0080 (7)
C5	0.0521 (9)	0.0721 (10)	0.0634 (9)	0.0034 (8)	0.0128 (7)	-0.0007 (8)
C6	0.0439 (8)	0.0927 (13)	0.0627 (9)	-0.0030 (8)	0.0078 (7)	-0.0117 (9)
C7	0.0633 (11)	0.171 (2)	0.0927 (15)	-0.0215 (13)	-0.0106 (10)	-0.0300 (15)
C8	0.1029 (16)	0.0712 (13)	0.158 (2)	0.0177 (12)	-0.0050 (15)	-0.0059 (14)
C9	0.0481 (8)	0.0579 (9)	0.0623 (9)	0.0015 (6)	0.0082 (7)	-0.0064 (7)
C10	0.0467 (7)	0.0532 (8)	0.0468 (8)	0.0045 (6)	0.0048 (6)	0.0021 (6)
C11	0.0497 (7)	0.0487 (8)	0.0570 (8)	-0.0034 (6)	0.0069 (6)	-0.0037 (6)
C12	0.0458 (7)	0.0607 (9)	0.0486 (8)	0.0045 (6)	0.0051 (6)	0.0070 (7)
C13	0.0605 (9)	0.0757 (11)	0.0636 (10)	0.0038 (8)	0.0158 (8)	-0.0013 (8)
C14	0.0638 (10)	0.0997 (13)	0.0652 (10)	0.0148 (10)	0.0236 (8)	0.0080 (9)
C15	0.0552 (9)	0.0993 (14)	0.0731 (11)	0.0025 (9)	0.0192 (8)	0.0248 (10)
C16	0.0645 (10)	0.0762 (11)	0.0779 (11)	-0.0064 (8)	0.0171 (9)	0.0142 (9)
C17	0.0572 (9)	0.0654 (10)	0.0624 (9)	-0.0007 (7)	0.0138 (7)	0.0054 (7)
C18	0.0444 (7)	0.0515 (8)	0.0492 (8)	0.0016 (6)	0.0084 (6)	0.0038 (6)
C19	0.0679 (9)	0.0545 (9)	0.0550 (8)	-0.0081 (7)	0.0165 (7)	-0.0002 (7)
C20	0.0940 (12)	0.0650 (10)	0.0565 (9)	-0.0043 (9)	0.0218 (9)	-0.0042 (8)
C21	0.0960 (13)	0.0823 (12)	0.0604 (10)	0.0022 (10)	0.0344 (9)	0.0049 (9)
C22	0.0743 (11)	0.0834 (12)	0.0750 (11)	-0.0091 (9)	0.0334 (9)	0.0107 (9)
C23	0.0586 (9)	0.0666 (10)	0.0681 (10)	-0.0126 (7)	0.0181 (8)	-0.0028 (8)
N1	0.0488 (6)	0.0571 (7)	0.0529 (7)	-0.0123 (5)	0.0121 (5)	-0.0067 (5)
N2	0.0488 (6)	0.0538 (7)	0.0490 (6)	-0.0051 (5)	0.0081 (5)	0.0020 (5)
N3	0.0774 (12)	0.0602 (11)	0.1527 (17)	-0.0077 (10)	-0.0133 (11)	-0.0300 (11)
01A	0.116 (9)	0.062 (5)	0.39 (2)	0.029 (6)	-0.092 (11)	-0.055 (7)
O2A	0.157 (9)	0.057 (4)	0.189 (14)	-0.003 (4)	-0.046 (10)	-0.039 (6)
O1B	0.059(2)	0.067 (2)	0.159 (4)	0.0116 (14)	-0.001(2)	-0.0281 (18)

O2B	0.100 (2)	0.0738 (17)	0.202 (7)	-0.0342(14)	-0.010(3)	-0.005(2)
03	0.0338(7)	0.1232(11)	0.0873 (9)	-0.0017(7)	-0.0103(0)	-0.0107(8)
04	0.0699 (7)	0.0812 (9)	0.1052 (10)	0.0147(7)	-0.0018 (7)	0.0063 (7)
Geometric para	meters (Å, °)					
C1—C6		1.357 (2)	C12–	-C17	1.3	99 (2)
C1—C2		1.399 (2)	C13–	-C14	1.3	39 (2)
C1—H1		0.93	C13–	-H13	0.9	3
C2—C3		1.3933 (19)	C14–	-C15	1.3	71 (2)
C2—N3		1.456 (2)	C14-	-H14	0.9.	3
C3—C4		1.396 (2)	C15-	-C16	1.3	77 (2)
C3—C11		1.5258 (19)	C15-	-H15	0.9.	3
C4—C5		1.383 (2)	C16–	-C17	1.3	79 (2)
C4—H4		0.93	C16–	-H16	0.9.	3
C5—O4		1.3505 (19)	C17–	-H17	0.93	3
C5—C6		1.410 (2)	C18–	-C19	1.3	897 (19)
C6—O3		1.361 (2)	C18–	-C23	1.3	902 (19)
С7—ОЗ		1.424 (2)	C18–	-N1	1.3	949 (17)
C7—H7A		0.96	C19–	-C20	1.3	78 (2)
С7—Н7В		0.96	C19–	-H19	0.93	3
C7—H7C		0.96	C20–	-C21	1.3	76 (2)
C8—O4		1.430 (2)	C20–	-H20	0.9	3
C8—H8A		0.96	C21–	-C22	1.3	72 (2)
C8—H8B		0.96	C21–	-H21	0.9.	3
C8—H8C		0.96	C22–	-C23	1.3	34 (2)
C9—C10		1.5040 (19)	C22–	-H22	0.9.	3
C9—C11		1.541 (2)	C23–	-H23	0.9.	3
С9—Н9А		0.97	N1—	N2	1.3	329 (15)
С9—Н9В		0.97	N3—	01A	0.93	3 (2)
C10—N2		1.2867 (17)	N3—	01B	1.2:	57 (7)
C10—C12		1.467 (2)	N3—	O2B	1.2	72 (4)
C11—N1		1.4717 (17)	N3—	O2A	1.2	32 (10)
C11—H11		0.98	O2A-	O2B	1.0'	7 (3)
C12—C13		1.388 (2)				
C6—C1—C2		120.45 (15)	C14-	-С13—Н13	119	.5
C6—C1—H1		119.8	C15–	-C14C13	120	.18 (16)
C2—C1—H1		119.8	C15–	-C14H14	119	.9
C3—C2—C1		122.30 (15)	C13–	-C14—H14	119	.9
C3—C2—N3		121.69 (14)	C14–	-C15-C16	119	.55 (16)
C1—C2—N3		116.00 (14)	C14-	-C15—H15	120	.2
C2—C3—C4		115.82 (13)	C16–	-C15—H15	120	.2
C2—C3—C11		124.64 (13)	C15–	-C16C17	120	.90 (17)
C4—C3—C11		119.39 (12)	C15–	-C16—H16	119	.5
C5—C4—C3		122.78 (13)	C17–	-C16—H16	119	.5
C5—C4—H4		118.6	C16–	-C17—C12	120	.35 (15)
С3—С4—Н4		118.6	C16–	-C17—H17	119	.8
04—C5—C4		125.83 (14)	C12–	-C17—H17	119	.8
U4—C5—C6		114.77 (14)	C19–	-C18-C23	118	.84 (13)

C4—C5—C6	119.38 (15)	C19—C18—N1	120.48 (12)
C1—C6—O3	125.44 (15)	C23—C18—N1	120.68 (13)
C1—C6—C5	119.17 (14)	C20—C19—C18	120.12 (14)
O3—C6—C5	115.39 (15)	C20—C19—H19	119.9
O3—C7—H7A	109.5	C18—C19—H19	119.9
O3—C7—H7B	109.5	C21—C20—C19	120.98 (16)
H7A—C7—H7B	109.5	C21—C20—H20	119.5
О3—С7—Н7С	109.5	С19—С20—Н20	119.5
H7A—C7—H7C	109.5	C22—C21—C20	119.12 (15)
H7B—C7—H7C	109.5	C22—C21—H21	120.4
O4—C8—H8A	109.5	C20—C21—H21	120.4
O4—C8—H8B	109.5	C21—C22—C23	120.89 (15)
H8A—C8—H8B	109.5	C21—C22—H22	119.6
O4—C8—H8C	109.5	С23—С22—Н22	119.6
Н8А—С8—Н8С	109.5	C22—C23—C18	120.04 (15)
H8B—C8—H8C	109.5	С22—С23—Н23	120
C10—C9—C11	102.46 (11)	C18—C23—H23	120
С10—С9—Н9А	111.3	N2—N1—C18	119.19 (11)
С11—С9—Н9А	111.3	N2—N1—C11	112.24 (10)
С10—С9—Н9В	111.3	C18—N1—C11	124.77 (11)
С11—С9—Н9В	111.3	C10—N2—N1	109.52 (11)
Н9А—С9—Н9В	109.2	O1A—N3—O1B	4.4 (13)
N2—C10—C12	121.14 (13)	O1A—N3—O2B	119.9 (10)
N2—C10—C9	113.28 (12)	O1B—N3—O2B	119.3 (4)
C12—C10—C9	125.54 (13)	O1A—N3—O2A	116.1 (10)
N1—C11—C3	111.70 (11)	O1B—N3—O2A	112.2 (8)
N1—C11—C9	102.22 (10)	O2B—N3—O2A	49.5 (12)
C3—C11—C9	112.31 (12)	O1A—N3—C2	120.1 (9)
N1—C11—H11	110.1	O1B—N3—C2	121.9 (3)
C3—C11—H11	110.1	O2B—N3—C2	117.3 (2)
C9—C11—H11	110.1	O2A—N3—C2	113.3 (6)
C13—C12—C17	118.03 (14)	O2B—O2A—N3	64.7 (11)
C13—C12—C10	120.76 (14)	O2A—O2B—N3	65.7 (5)
C17—C12—C10	121.19 (13)	C6—O3—C7	116.90 (16)
C12—C13—C14	120.99 (16)	C5—O4—C8	118.52 (14)
C12—C13—H13	119.5		
C6—C1—C2—C3	1.2 (3)	N1-C18-C19-C20	-179.27 (13)
C6—C1—C2—N3	-179.87 (17)	C18—C19—C20—C21	-0.4 (2)
C1—C2—C3—C4	1.7 (2)	C19—C20—C21—C22	0.8 (3)
N3—C2—C3—C4	-177.18 (15)	C20—C21—C22—C23	-0.7 (3)
C1—C2—C3—C11	-173.75 (14)	C21—C22—C23—C18	0.3 (3)
N3—C2—C3—C11	7.3 (3)	C19—C18—C23—C22	0.0 (2)
C2—C3—C4—C5	-2.8 (2)	N1-C18-C23-C22	179.35 (14)
C11—C3—C4—C5	172.92 (13)	C19—C18—N1—N2	13.30 (19)
C3—C4—C5—O4	-177.22 (14)	C23—C18—N1—N2	-165.99 (12)
C3—C4—C5—C6	1.0 (2)	C19—C18—N1—C11	169.58 (13)
C2—C1—C6—O3	176.69 (16)	C23—C18—N1—C11	-9.7 (2)
C2—C1—C6—C5	-3.0 (3)	C3—C11—N1—N2	-116.82 (12)
O4—C5—C6—C1	-179.59 (15)	C9—C11—N1—N2	3.46 (14)

C4—C5—C6—C1	2.0 (2)	C3—C11—N1—C18	85.48 (16)
O4—C5—C6—O3	0.7 (2)	C9—C11—N1—C18	-154.24 (12)
C4—C5—C6—O3	-177.77 (14)	C12-C10-N2-N1	179.09 (11)
C11-C9-C10-N2	5.23 (15)	C9-C10-N2-N1	-3.25 (16)
C11-C9-C10-C12	-177.23 (12)	C18—N1—N2—C10	158.75 (11)
C2-C3-C11-N1	-163.01 (14)	C11—N1—N2—C10	-0.33 (15)
C4—C3—C11—N1	21.66 (18)	C3—C2—N3—O1A	-14.5 (15)
C2—C3—C11—C9	82.81 (18)	C1-C2-N3-O1A	166.5 (15)
C4—C3—C11—C9	-92.52 (15)	C3—C2—N3—O1B	-19.2 (4)
C10-C9-C11-N1	-4.77 (13)	C1-C2-N3-O1B	161.9 (3)
C10—C9—C11—C3	115.09 (12)	C3—C2—N3—O2B	147.0 (8)
N2-C10-C12-C13	173.82 (13)	C1—C2—N3—O2B	-31.9 (9)
C9—C10—C12—C13	-3.5 (2)	C3—C2—N3—O2A	-158 (2)
N2-C10-C12-C17	-4.5 (2)	C1-C2-N3-O2A	23 (2)
C9—C10—C12—C17	178.15 (13)	O1A—N3—O2A—O2B	108.2 (15)
C17—C12—C13—C14	0.5 (2)	O1B—N3—O2A—O2B	110.4 (10)
C10-C12-C13-C14	-177.84 (13)	C2—N3—O2A—O2B	-106.8 (8)
C12—C13—C14—C15	-0.6 (2)	O1A—N3—O2B—O2A	-100.1 (14)
C13-C14-C15-C16	0.1 (2)	O1B—N3—O2B—O2A	-95.1 (9)
C14—C15—C16—C17	0.5 (2)	C2—N3—O2B—O2A	98.3 (7)
C15-C16-C17-C12	-0.6 (2)	C1—C6—O3—C7	-1.3 (3)
C13—C12—C17—C16	0.1 (2)	C5—C6—O3—C7	178.40 (16)
C10-C12-C17-C16	178.44 (13)	C4—C5—O4—C8	-5.7 (3)
C23—C18—C19—C20	0.0 (2)	C6—C5—O4—C8	175.99 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		
C15—H15···O1B ⁱ	0.93	2.55	3.467 (6)	170		
C20—H20···N2 ⁱⁱ	0.93	2.54	3.364 (2)	149		
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+3/2$; (ii) x , $-y+1$, $z+1/2$.						

